

Optimising ADCP Accuracy

- Calibrations, comparisons and extrapolations

John Fenwick
(& Andrew Willsman and Chris Appleby)

National Institute of Water and Atmospheric Research Ltd (NIWA)

- NIWA is a government-owned research institute and is also New Zealand's National Hydrometric Service
- 500 staff carry out a wide variety of water and atmosphere related science
- Hydrometric teams, about 60 staff, at 14 locations -largest users of acoustic instruments, and greatest knowledge base within NIWA
- Provide support and solutions for acoustic instruments to other agencies in New Zealand

Calibrations - the need for checking acoustic instruments

- Increasing proportion of acoustic flow measurements
- Sometimes just the change to acoustic gaugings suggest flow ratings need to be changed – so need to be confident in the technology
- Although re-calibration is not required in theory, changes and updates can cause uncertainty
- New industry standards being introduced – National Environmental Monitoring Standards - (also USGS, Australia) will see current meters and acoustic instruments calibrated more frequently.

When to check calibrations?

- Standards are suggesting 2 and 3 year intervals for some sort of check
- All incoming acoustic instruments to NIWA are tested before being put into the field
- Repaired instruments also retested
- Has proved worthwhile, showing
 - Incorrect beam matrices loaded
 - Single beams containing errors
- Also useful for diagnosing issues or apparent issues

Beam 1 faulty after firmware upgrade

NIWA's rating tank

- Commissioned in 1963
- Calibrated and tested ~8500 current meters and acoustic meters since commissioned
- 50 metres long (too short!)
- Capable of velocities up to 3.3 m/s
- Inter-agency comparison checks done with a dedicated Seba Mini with METAS, Switzerland, USGS HIF, Min of Primary Ind, Brisbane, and others.

Rio Grande and StreamPro Testing

- Same testing methods used for both instruments
- Velocity testing
 - Tested at four velocities
 - 0.1 m/s
 - 0.5 m/s
 - 1.0 m/s
 - 1.5 m/s
 - Velocity runs done with beams 1 & 3 and2 & 4 leading
 - Distance Made Good (DMG) checked at 0.25m/s for around 60 seconds

Customer » ARC

ADCP Type » Rio Grande

ADCP Serial Number » 10911

Date Checked » 2012-05-31

Meter Evaluation Outcome»		PASS	
Velocity Check Summary			
0.1 m/s % Error »	-0.48%	PASS	
0.1 m/s Allowable ± Error Band »	2.91%		
0.5 m/s % Error »	-0.24%	PASS	
0.5 m/s Allowable ± Error Band »	1.39%		
1.0 m/s % Error »	0.01%	PASS	
1.0 m/s Allowable ± Error Band »	1.20%		
1.5 m/s % Error »	-0.25%	PASS	
1.5 m/s Allowable ± Error Band »	1.13%		
R2 »	1.0000	PASS	
112 //	1.0000	1,233	
DMG error	-0.40%	> 0.992	< 1.008
Average DMG Ratio	1.004	PASS	PASS
Temperature Probe Check (*C diff from reference) »	0.44	PASS	

Comparisons

- With different stream conditions and methods
 - Effects of differing substrate and turbulence
- With current meter gaugings
- With established rating curves
 - mainly past current meter gaugings
 - case studies

The effects of turbulence and boat stability on StreamPro Mode 13 flow measurements

- 20 transects for each test, averaged

Low turbulence

No upstream obstacles, 3 mm substrate under beam path:

average bad bins 1%, max dev +/- 1.8%

Moderate turbulence - 100 mm angular upstream:

average bad bins 6%, max dev. +/- 2.4%

Higher turbulence: single row bricks upstream

average bad bins 32%, max dev. +/- 4.6%

High turbulence - Double row bricks upstream

average bad bins 38%, max dev. +/- 10.5%

Turbulence comparison results

Conclusions

- (For water mode 13, low velocity mode)
- Variability of results not affected significantly by substrate size or shape until...
 - size is 100 mm AND edges are square
- Turbulence, especially once bad bins > 30%, has a significant effect on variability of results.
 - But shows no apparent bias
- Water Mode 13 performance excellent over a wide range of substrates.
- Deployment technique is very significant
 - Stabilise the boat on windy days
 - Use a powered traveller to get uniform boat speed

Boat stability makes a difference on windy days

StreamPro Tools

- Remote control traveller developed to fill a need
 - Constant transit (boat) speed important on small streams
- Compass-equipped StreamPros:
 - Allows for the incorporation of external GPS data for correcting for moving bed
 - Pitch and Roll data
 - Precision heading data

Indicators of data quality

- Mount StreamPros (and Rios) in Riverboats
 - Riverboats set up to take either instrument
 - Parani Bluetooth used for comms
 - Options to plug in sounders and GPS
 - GPS uses VTG string, very limited WAAS available in NZ
 - Currently looking a new models of GPS

Initial comparisons with current meters

- Clutha River floods, 1999 first set of gaugings with new Rio Grande
 - Not enough confidence, so did concurrent c-meter gaugings
 - Results: differences ranged from -2% to + 6%, flows in the order of 2000 – 3000 m3/s

 Eventually satisfied ourselves that ADCPs had no major flaws and results compared well with other methods

Further comparisons

- But from time to time we have seen differences that need explaining
- Changing from current meters to ADCPs causes a re-think
- One example: suggested rating changes because of technology change?!
- Is this phenomenon real?
- A case study Clutha River

Initial conclusion — is it valid?

- Data Comment at 16-March-2003 10:00:00
- Data Type: Rating
- Site: Clutha River at Below Cardrona Confluence
- Rating change 16-March-2003 (10:00) is not the result of any channel alteration but reflects the better accuracy of ADCP measurements which commenced at this date.
- Prior to 2003 boat gaugings used Large
 Ott propeller meters above a 75lb sounding
 weight
- After 2003 boat mounted ADCP Rio Grande 1200 kHz.

Rating Plot

ADCP rating (pink) < historic current meter Q ratings (red)

Historic current meter gaugings

- Non purpose-built boat
- Boat tended to pitch up with velocity (V8 in back)
- No vertical angle corrections – not visible
- Single point 0.6 velocity measurements

Comparison gauging series

Done during a high flow event on 15 Jan 2013

- Used a variety of instrumentation
 - Rio Grande (1200KHz)
 - RiverRay
 - Large Ott current meter above a 75lb sounding weight
 - "POEM" pitot velocimeter
- The second-highest flow measured, reasonably stable

Rio Grande gauging

- Discharge = 683 m3/s, max dev. +/- 2%, 4 transects
- Upper velocities up to 3.5 m/s
- Some missing data (due to turbulence and/or air under the transducer)
- Loop moving-bed test not valid (BT breaks)
 - So VTG used as reference
- Widths agreed with tagline (so VTG worked well)
- Top extrapolation significant (25% of flow)

RiverRay gauging

- At first unsuccessful, as velocities too high (at 3.5 m/s) for mounting method
- Trimaran lifted in the fast water and and air appeared to get under it
- So tried drifting diagonally downstream

RiverRay gauging

Downstream ferry-glide transects

- This lowered surface water velocities (in relation to boat speed)
- Successful using BT only (no GPS)
- The RiverRay with this technique provided very good data:
 - 690 m3/s and max. deviation +/- 2%)

Large Ott and sounding weight

- Is the sounding technique correct?
 - Between the boulders or on top of large cobbles/boulders?
 - Does the winch operator take the "first touch" depth or repeat and sound a deeper depth?
 - Boat movement a factor?
- Does the boat movement make the current meter over-register the velocities?

POEM gauging

- 686 m3/s
- Is a pitot velocimeter
- Developed for high velocities
- Velocity range 1 m/s to 9 m/s
- Samples V and D at 28Hz
- Wound up and down at each vertical over 40 seconds
- Can sample close to both top and bottom of water column
- Standard area-velocity calculation

Flow hydrograph – during gaugings

Conclusions

- 1) Comparison gaugings suggest no issue with the Rio Grande or RiverRay discharge results.
- 2) The POEM confirmed the velocity profile extrapolations and its flow estimate agreed
- 3) The historical Ott/sounding weight gaugings at high flow appear to:
 - Have vertical angle issues (lack of on-board visibility)
 - Have questionable depth-sounding issues
 - Thus have large uncertainties (calculated and unknown)
 - Be biased high by at least 3%
- 4) Outcome we fully believe the ADCP results, and the historic ratings will be shifted at least 3% towards the ADCP measurements.

Extrapolation for unmeasured regions

- Especially important in shallow rivers
- "Extrap" software from USGS enables plotting of vertical velocity profiles
 - Enables us to estimate if extrapolations look reasonable

Wairaurahiri example

This example indicates that the defaults of power curve top and bottom aren't such a good fit

At a lake outlet, so there is potential for a different velocity profile

Extrap plot suggests:

Best visual fit is: Top = constant, Bottom = No Slip

POEM data confirm this

Also indicates: top = Constant, bottom = No Slip

Conclusions and learning

- Calibration value in tank testing (and "regatta" testing) all instruments regularly – gives confidence and can diagnose issues
- Where possible avoid turbulence will cause missing bins which in turn causes more variation – keep below 30 % missing bins
- Smooth transit rates (boat speed) make for more accurate results
- Comparisons with other methods are still useful to resolve issues with historic and current data
- Comparisons with other technology can build confidence in the excellent accuracy of ADCPs
- It is worthwhile to check the extrapolations used for unmeasured areas of flow (use Extrap)
- ADCPs have proved revolutionary, pushed out the boundaries around river flow measurement, and we are still learning

That's it.....

Thank you for your attention.

Enjoy the rest of the conference.

POEM results

- Q = 688 m3/s
- 1000 1300 depth velocity pairs at each vertical
- Data averaged into deciles
- Blue is the downward track, green the up one

Differences – the possible reasons

Gauging technique/instrumentation

- 1) ADCP under-estimates flow:
 - Moving bed? (under-estimates Q)
 - Depths register top of cobbles (under-estimate Depth)
 - Top & bottom extrapolations (could they under-estimate V?)
- 2) Current meter/sounding technique could it over-estimate flow?
 - Drag angle issue? (over-estimate both Depth and Velocity)
 - Velocity profile? (how valid is the 0.6 method?)

Or

Site-specific physical change

- Rating change (bed movement and or bank change)
- Datum shift (recorder issue)

